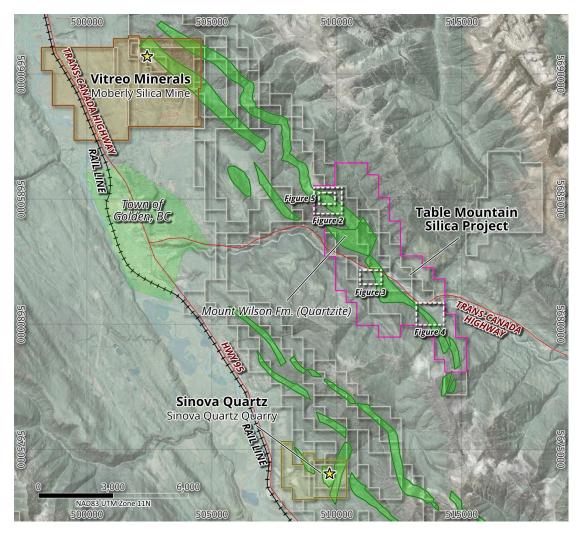
# Troy Minerals Reports Analytical Results from Table Mountain Silica Project, Identifying Broad High-Purity Zones

**Vancouver, B.C. – February 6, 2025** - Troy Minerals Inc. ("Troy" or the "Company") (CSE: TROY; OTCQB: TROYF; FSE: VJ3) is pleased to announce that it has received results from a sampling and mapping program on its 100% owned Table Mountain Silica Project, located near Golden, British Columbia, Canada.


# **Key Highlights**

- Three distinct zones of high-purity silica mineralization identified within the Mount Wilson Quartzite Formation.
- 98.86% SiO<sub>2</sub> over a total of 62.11 metres of channel sampling in five channels at the main Table Mountain Zone.
- Outcrop sampling returned 98.18% to 99.74% SiO<sub>2</sub> from 45 samples at Table Mountain Zone, 97.83% to 99.49% SiO<sub>2</sub> from 13 samples at South Zone, and 95.82% to 99.82% SiO<sub>2</sub> from 29 samples at Southeast Zone. \*
- Very low deleterious elements identified in all samples.

President of Troy Minerals Inc., Yannis Tsitos commented: "These comprehensive maiden assay results validate the potential of Table Mountain as a key high-purity silica asset. Sampling confirmed the exceptional quality and consistency of silica mineralization across the Project. With grades reaching 98 to 99% SiO<sub>2</sub> across multiple zones of extensive outcrop exposure, and sampling ranging from 98.18% to 99.74% SiO<sub>2</sub> at the main Table Mountain Zone, we are rapidly advancing our understanding of this strategic asset. The Project's infrastructure advantages and proximity to existing silica operations further enhance its potential as we work to establish Troy as a significant player in the North American high-purity silica market, positioning the Company for long-term growth."

The sampling program consisted of both systematic grab samples and channel samples, with a total of 110 grab samples (107 outcrop and 3 float) taken within the property area and 70 channel samples collected from 62.11 metres within 74.16 metres of channels.

#### Figure 1. Index Map



#### **Outcrop Sampling Results**

Three main areas returned significant high-purity silica results: the Table Mountain Zone, located at the north end of the Property, the South Zone, and the Southeast Zone.

The most extensively sampled zone was the Table Mountain Zone, which returned an average grade of 98.90% SiO<sub>2</sub> from 45 grab samples (42 outcrop, 3 float), with values ranging from 98.18% to 99.74% SiO<sub>2</sub>. Additionally, from these samples the following average values were returned: 0.31% Fe<sub>2</sub>O<sub>3</sub>, 0.01% CaO, 0.14% Al<sub>2</sub>O<sub>3</sub>, 0.02% MgO, 0.01% TiO<sub>2</sub>, 0.01% P<sub>2</sub>O<sub>5</sub>, and 14ppm boron. See **Figure 2 and Table 1**. \*

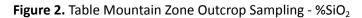





Table 1. Table Mountain Zone Outcrop Samples

| Sample # | Easting | Northing | SiO2  | Al <sub>2</sub> O <sub>3</sub> | CaO  | Fe <sub>2</sub> O <sub>3</sub> | MgO    | P <sub>2</sub> O <sub>5</sub> | TiO₂  | В     |
|----------|---------|----------|-------|--------------------------------|------|--------------------------------|--------|-------------------------------|-------|-------|
|          | (m)     | (m)      | (%)   | (%)                            | (%)  | (%)                            | (%)    | (%)                           | (%)   | (ppm) |
| 299516   | 509114  | 5685249  | 99.41 | 0.11                           | 0.02 | 0.39                           | 0.01   | <0.01                         | <0.01 | 6     |
| 299517   | 509193  | 5685166  | 98.84 | 0.14                           | 0.01 | 0.23                           | 0.02   | <0.01                         | <0.01 | 8     |
| 299518   | 509314  | 5685171  | 99.20 | 0.10                           | 0.01 | 0.25                           | 0.02   | < 0.01                        | 0.01  | 10    |
| 299519   | 509350  | 5685151  | 98.26 | 0.12                           | 0.01 | 0.35                           | 0.01   | <0.01                         | 0.01  | 15    |
| 299520   | 509369  | 5685129  | 99.20 | 0.13                           | 0.01 | 0.21                           | < 0.01 | <0.01                         | 0.03  | 16    |
| 299521   | 509395  | 5685107  | 99.17 | 0.15                           | 0.01 | 0.27                           | 0.02   | <0.01                         | 0.01  | 8     |
| 299522   | 509418  | 5685094  | 98.78 | 0.23                           | 0.02 | 0.26                           | 0.01   | <0.01                         | 0.01  | 12    |
| 299523   | 509442  | 5685075  | 98.59 | 0.14                           | 0.02 | 0.26                           | < 0.01 | 0.01                          | 0.01  | 12    |
| 299524   | 509450  | 5685043  | 99.74 | 0.07                           | 0.01 | 0.30                           | 0.01   | 0.01                          | 0.01  | 6     |
| 299525   | 509471  | 5685019  | 98.58 | 0.04                           | 0.01 | 0.36                           | 0.01   | 0.01                          | 0.01  | 7     |
| 299526   | 509482  | 5684990  | 99.25 | 0.14                           | 0.02 | 0.27                           | 0.04   | 0.01                          | 0.01  | 7     |
| 299527   | 509500  | 5684961  | 99.66 | 0.16                           | 0.02 | 0.31                           | 0.02   | 0.01                          | 0.01  | 7     |
| 299528   | 509515  | 5684938  | 99.21 | 0.14                           | 0.01 | 0.32                           | 0.02   | 0.01                          | 0.01  | 7     |
| 299529   | 509538  | 5684911  | 99.13 | 0.11                           | 0.01 | 0.27                           | 0.03   | 0.01                          | 0.01  | 21    |
| 299530   | 509561  | 5684862  | 98.18 | 0.25                           | 0.01 | 0.31                           | 0.03   | 0.01                          | 0.01  | 7     |
| 299531   | 509598  | 5684823  | 98.93 | 0.27                           | 0.02 | 0.36                           | 0.03   | 0.01                          | 0.01  | 7     |
| 299532   | 509583  | 5684759  | 98.99 | 0.09                           | 0.01 | 0.30                           | <0.01  | 0.01                          | 0.01  | 7     |
| 299533   | 509619  | 5684743  | 98.72 | 0.16                           | 0.01 | 0.35                           | 0.02   | 0.01                          | 0.01  | 14    |
| 299534   | 509641  | 5684726  | 98.18 | 0.30                           | 0.01 | 0.33                           | 0.04   | 0.01                          | 0.02  | 15    |
| 299535   | 509712  | 5684697  | 99.41 | 0.13                           | 0.01 | 0.30                           | 0.02   | 0.01                          | 0.01  | 7     |

| 299536 | 509736 | 5684685 | 99.27 | 0.11 | 0.01 | 0.33 | 0.02   | 0.01 | 0.01  | 7  |
|--------|--------|---------|-------|------|------|------|--------|------|-------|----|
| 299537 | 509764 | 5684670 | 98.58 | 0.13 | 0.02 | 0.36 | 0.03   | 0.01 | 0.02  | 8  |
| 299548 | 509306 | 5685510 | 99.32 | 0.14 | 0.01 | 0.29 | 0.01   | 0.01 | 0.01  | 18 |
| 299560 | 509476 | 5685127 | 98.99 | 0.13 | 0.01 | 0.32 | 0.03   | 0.01 | 0.02  | 27 |
| 299561 | 509472 | 5685107 | 99.01 | 0.05 | 0.01 | 0.32 | 0.01   | 0.01 | <0.01 | 18 |
| 299562 | 509457 | 5685115 | 98.74 | 0.15 | 0.01 | 0.26 | 0.01   | 0.01 | 0.02  | 28 |
| 299563 | 509439 | 5685112 | 98.35 | 0.20 | 0.02 | 0.34 | 0.02   | 0.01 | 0.01  | 27 |
| 299564 | 509459 | 5685092 | 99.20 | 0.09 | 0.01 | 0.32 | <0.01  | 0.01 | 0.01  | 21 |
| 299565 | 509487 | 5685107 | 99.49 | 0.09 | 0.01 | 0.28 | 0.03   | 0.01 | 0.02  | 28 |
| 299566 | 509490 | 5685083 | 98.48 | 0.25 | 0.02 | 0.35 | 0.01   | 0.01 | 0.01  | 26 |
| 299567 | 509503 | 5685071 | 99.03 | 0.11 | 0.02 | 0.34 | 0.02   | 0.01 | <0.01 | 21 |
| 299568 | 509477 | 5685067 | 99.16 | 0.10 | 0.01 | 0.30 | < 0.01 | 0.01 | <0.01 | 18 |
| 299569 | 509478 | 5685044 | 98.68 | 0.10 | 0.01 | 0.32 | 0.03   | 0.01 | <0.01 | 20 |
| 299570 | 509506 | 5685041 | 98.46 | 0.43 | 0.02 | 0.32 | 0.06   | 0.01 | 0.01  | 29 |
| 299571 | 509523 | 5685054 | 98.81 | 0.13 | 0.01 | 0.31 | 0.03   | 0.01 | 0.01  | 22 |
| 299572 | 509382 | 5685160 | 98.42 | 0.09 | 0.01 | 0.29 | 0.01   | 0.01 | 0.01  | 23 |
| 299573 | 509397 | 5685160 | 98.92 | 0.11 | 0.01 | 0.36 | < 0.01 | 0.01 | <0.01 | 18 |
| 299574 | 509406 | 5685142 | 99.12 | 0.09 | 0.01 | 0.30 | 0.02   | 0.01 | <0.01 | 17 |
| 299575 | 509409 | 5685120 | 98.56 | 0.14 | 0.01 | 0.37 | <0.01  | 0.01 | <0.01 | 21 |
| 299581 | 509357 | 5685172 | 98.84 | 0.08 | 0.02 | 0.32 | < 0.01 | 0.01 | 0.01  | 18 |
| 299582 | 509429 | 5685142 | 98.87 | 0.15 | 0.01 | 0.29 | <0.01  | 0.01 | 0.02  | 8  |
| 299583 | 509446 | 5685146 | 98.25 | 0.33 | 0.02 | 0.33 | 0.03   | 0.01 | 0.03  | 17 |
| 299584 | 509455 | 5685145 | 99.49 | 0.11 | 0.02 | 0.27 | <0.01  | 0.01 | 0.01  | 5  |
| 299585 | 509473 | 5685142 | 98.66 | 0.08 | 0.01 | 0.36 | <0.01  | 0.01 | <0.01 | 6  |
| 299586 | 509493 | 5685133 | 98.52 | 0.05 | 0.01 | 0.29 | <0.01  | 0.01 | <0.01 | <5 |
|        |        |         |       |      |      |      |        |      | -     |    |

Note: 299548, 299584, and 299585 are float samples taken near outcrop.

The South Zone, comprising 13 high-grade quartzite outcrop grab samples averaged 98.80% SiO<sub>2</sub> with values ranging from 97.83% to 99.49% SiO<sub>2</sub>. These samples averaged 0.28% Fe<sub>2</sub>O<sub>3</sub>, 0.13% CaO, 0.13% Al<sub>2</sub>O<sub>3</sub>, 0.02% MgO, <0.01% TiO<sub>2</sub>, 0.02% P<sub>2</sub>O<sub>5</sub>, and 6ppm boron. See **Figure 3 and Table 2**. \*

Figure 3. South Zone Outcrop Sampling - %SiO<sub>2</sub>



| Sample # | Easting<br>(m) | Northing<br>(m) | SiO₂<br>(%) | Al₂O₃<br>(%) | CaO<br>(%) | Fe <sub>2</sub> O <sub>3</sub><br>(%) | MgO<br>(%) | P₂O₅<br>(%) | TiO₂<br>(%) | B<br>(ppm) |
|----------|----------------|-----------------|-------------|--------------|------------|---------------------------------------|------------|-------------|-------------|------------|
| 248351   | 511603         | 5682006         | 98.60       | 0.28         | 0.08       | 0.25                                  | 0.04       | 0.01        | 0.01        | 15         |
| 248352   | 511563         | 5681948         | 99.45       | 0.15         | 0.02       | 0.22                                  | 0.02       | 0.01        | <0.01       | 6          |
| 248353   | 511552         | 5681948         | 99.01       | 0.19         | 0.03       | 0.29                                  | 0.04       | 0.01        | 0.01        | 9          |
| 248354   | 511551         | 5681951         | 99.09       | 0.11         | 0.02       | 0.22                                  | 0.03       | 0.01        | 0.01        | 6          |
| 248355   | 511530         | 5681940         | 98.74       | 0.09         | 0.02       | 0.23                                  | < 0.01     | 0.01        | <0.01       | 6          |
| 248356   | 511522         | 5681942         | 98.82       | 0.08         | 0.01       | 0.31                                  | < 0.01     | 0.01        | <0.01       | <5         |
| 248357   | 511512         | 5681951         | 98.31       | 0.09         | 0.01       | 0.24                                  | 0.01       | 0.01        | 0.01        | 5          |
| 248358   | 511485         | 5681948         | 98.14       | 0.13         | 0.28       | 0.32                                  | 0.03       | 0.01        | 0.01        | 8          |
| 248359   | 511461         | 5681935         | 99.49       | 0.11         | 0.02       | 0.30                                  | 0.02       | 0.01        | <0.01       | 10         |
| 248360   | 511436         | 5681932         | 99.06       | 0.03         | 0.05       | 0.25                                  | 0.01       | 0.02        | <0.01       | 5          |
| 248361   | 511444         | 5681918         | 99.42       | 0.07         | 0.01       | 0.29                                  | 0.02       | 0.01        | <0.01       | 6          |
| 248362   | 511440         | 5681942         | 97.83       | 0.32         | 0.73       | 0.36                                  | 0.03       | 0.03        | 0.01        | 8          |
| 248364   | 511374         | 5682002         | 98.43       | 0.09         | 0.43       | 0.36                                  | < 0.01     | 0.16        | <0.01       | <5         |

 Table 2.
 South Zone Outcrop Samples

The Southeast Zone, comprising 29 high-grade quartzite outcrop grab samples, returned an average of 98.52% SiO<sub>2</sub> with values ranging from 95.82% to 99.82% SiO<sub>2</sub>. Average values for other constituents were: 0.35% Fe<sub>2</sub>O<sub>3</sub>, 0.07% CaO, 0.30% Al<sub>2</sub>O<sub>3</sub>, 0.06% MgO, 0.02% TiO<sub>2</sub>, <0.01% P<sub>2</sub>O<sub>5</sub>, and 26ppm boron. See **Figure 4 and Table 3**.\*



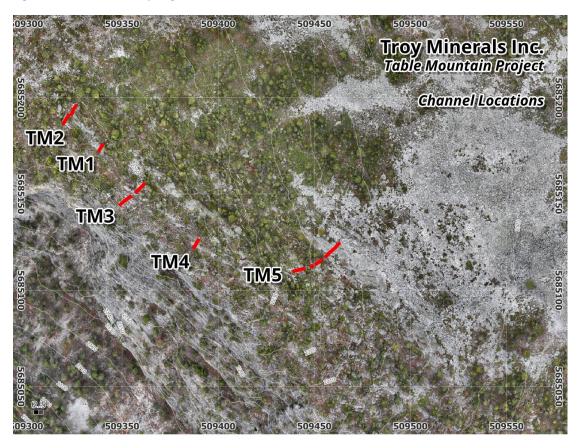
Figure 4. Southeast Zone Outcrop Sampling - %SiO<sub>2</sub>

Table 3. Southeast Zone Outcrop Samples - %SiO<sub>2</sub>

| Sample # | Easting<br>(m) | Northing<br>(m) | SiO₂<br>(%) | Al <sub>2</sub> O <sub>3</sub><br>(%) | CaO<br>(%) | Fe <sub>2</sub> O <sub>3</sub><br>(%) | MgO<br>(%) | P₂O₅<br>(%) | TiO₂<br>(%) | B<br>(ppm) |
|----------|----------------|-----------------|-------------|---------------------------------------|------------|---------------------------------------|------------|-------------|-------------|------------|
| 248384   | 513642         | 5680350         | 98.22       | 0.37                                  | 0.21       | 0.41                                  | 0.14       | 0.02        | 0.03        | 27         |
| 248385   | 513671         | 5680320         | 95.82       | 0.57                                  | 0.69       | 0.51                                  | 0.52       | 0.02        | 0.03        | 30         |
| 248386   | 513685         | 5680313         | 97.77       | 0.48                                  | 0.05       | 0.37                                  | 0.05       | 0.01        | 0.03        | 30         |
| 248387   | 513708         | 5680285         | 98.90       | 0.36                                  | 0.02       | 0.35                                  | 0.04       | <0.01       | 0.03        | 30         |
| 248388   | 513735         | 5680261         | 98.11       | 0.32                                  | 0.03       | 0.31                                  | 0.04       | <0.01       | 0.03        | 35         |
| 248389   | 513748         | 5680244         | 98.05       | 0.49                                  | 0.03       | 0.30                                  | 0.03       | <0.01       | 0.01        | 28         |
| 248390   | 513654         | 5680223         | 98.91       | 0.13                                  | 0.01       | 0.27                                  | 0.04       | <0.01       | 0.01        | 29         |
| 248391   | 513627         | 5680208         | 98.74       | 0.09                                  | 0.02       | 0.30                                  | 0.02       | <0.01       | 0.02        | 27         |
| 248392   | 513600         | 5680217         | 99.52       | 0.06                                  | 0.02       | 0.32                                  | 0.03       | <0.01       | 0.01        | 23         |
| 248393   | 513564         | 5680220         | 96.98       | 1.04                                  | 0.05       | 0.33                                  | 0.07       | 0.03        | 0.07        | 41         |
| 248394   | 513592         | 5680259         | 98.91       | 0.30                                  | 0.13       | 0.35                                  | 0.13       | <0.01       | 0.02        | 31         |
| 248395   | 513390         | 5680466         | 99.26       | 0.11                                  | 0.02       | 0.35                                  | 0.03       | <0.01       | 0.01        | 25         |
| 248396   | 513367         | 5680495         | 98.81       | 0.12                                  | 0.07       | 0.34                                  | 0.04       | <0.01       | 0.01        | 25         |
| 248397   | 513332         | 5680531         | 99.25       | 0.08                                  | 0.02       | 0.37                                  | 0.01       | <0.01       | 0.01        | 26         |

| 248398 | 513301 | 5680539 | 99.08 | 0.15 | 0.21 | 0.33 | 0.04  | < 0.01 | 0.01 | 27 |
|--------|--------|---------|-------|------|------|------|-------|--------|------|----|
| 248399 | 513283 | 5680559 | 98.76 | 0.07 | 0.09 | 0.36 | 0.02  | <0.01  | 0.01 | 22 |
| 248400 | 513263 | 5680602 | 98.77 | 0.08 | 0.01 | 0.29 | <0.01 | <0.01  | 0.01 | 24 |
| 299501 | 513231 | 5680636 | 98.14 | 0.15 | 0.02 | 0.41 | 0.02  | <0.01  | 0.01 | 26 |
| 299502 | 513188 | 5680660 | 99.05 | 0.20 | 0.02 | 0.27 | <0.01 | <0.01  | 0.01 | 27 |
| 299503 | 513160 | 5680700 | 99.07 | 0.16 | 0.02 | 0.31 | 0.02  | <0.01  | 0.01 | 27 |
| 299504 | 513133 | 5680705 | 98.85 | 0.13 | 0.02 | 0.26 | 0.01  | <0.01  | 0.01 | 26 |
| 299508 | 513834 | 5679986 | 98.68 | 0.15 | 0.03 | 0.26 | 0.02  | <0.01  | 0.01 | 21 |
| 299509 | 513876 | 5679941 | 98.88 | 0.23 | 0.03 | 0.27 | 0.04  | <0.01  | 0.03 | 34 |
| 299510 | 513904 | 5679907 | 99.08 | 0.05 | 0.02 | 0.29 | <0.01 | <0.01  | 0.01 | 11 |
| 299511 | 513968 | 5679864 | 99.82 | 0.15 | 0.02 | 0.27 | 0.02  | <0.01  | 0.01 | 23 |
| 299512 | 514023 | 5679832 | 99.21 | 0.12 | 0.02 | 0.29 | 0.03  | <0.01  | 0.03 | 10 |
| 299513 | 514070 | 5679980 | 97.08 | 1.11 | 0.02 | 0.75 | 0.09  | 0.01   | 0.05 | 18 |
| 299514 | 514081 | 5680011 | 96.66 | 1.27 | 0.02 | 0.43 | 0.05  | 0.01   | 0.07 | 26 |
| 299515 | 514075 | 5680039 | 98.58 | 0.26 | 0.07 | 0.45 | 0.07  | 0.01   | 0.03 | 14 |

The remainder of samples were either taken near the contacts of the adjacent units or from non-quartzite outcrops of the adjacent Glenogle shale (east contact) and Beaverfoot dolomite (west contact) and were not included in the statistical summary of the quartzite samples taken.


## **Channel Sampling Results**

Channel sampling was conducted at the Table Mountain Zone, with results consistently similar to the outcrop sampling results. Sampling procedure consisted of continuous chip sampling along a 3-centimetre cut channel. Samples were taken continuously over 1-metre intervals perpendicular to the strike orientation of the outcrop, with the sample sequence starting from the southwest end of the channel. Intervals shorter than 20 centimetres were combined with the previous interval. 66 continuous chip channel samples were collected over 62.11 metres within 74.16 metres in five channels, returning a weighted average of 98.86% SiO<sub>2</sub>.

Four additional duplicates were taken as QA/QC checks and passed validation. Sample density is sufficient to indicate the accurate representation of the underlying mineralization.

See Figure 5 and Table 4 below.





| Channel | From  | То    | Interval | SiO2       | Al <sub>2</sub> O <sub>3</sub> | CaO   | Fe <sub>2</sub> O <sub>3</sub> | MgO   | P <sub>2</sub> O <sub>5</sub> | TiO₂                                                                | В     |  |  |
|---------|-------|-------|----------|------------|--------------------------------|-------|--------------------------------|-------|-------------------------------|---------------------------------------------------------------------|-------|--|--|
|         | (m)   | (m)   | (m)      | (%)        | (%)                            | (%)   | (%)                            | (%)   | (%)                           | (%)                                                                 | (ppm) |  |  |
| TM1     | 0.00  | 4.74  | 4.74     | 98.83      | 0.15                           | 0.01  | 0.30                           | 0.01  | 0.01                          | 0.01                                                                | 24    |  |  |
|         | 0.00  | 5.80  | 5.80     | 98.88      | 0.10                           | 0.01  | 0.33                           | 0.01  | 0.01                          | 0.01                                                                | 10    |  |  |
|         | 5.80  | 6.30  | 0.50     |            |                                |       | Overbu                         | rden  |                               |                                                                     |       |  |  |
| TM2     | 6.30  | 8.83  | 2.53     | 98.90      | 0.10                           | 0.01  | 0.30                           | 0.01  | 0.01                          | 0.02                                                                | 7     |  |  |
|         | 8.83  | 9.38  | 0.55     |            |                                |       | Overbu                         | rden  |                               |                                                                     |       |  |  |
|         | 9.38  | 13.0  | 3.62     | 99.21      | 0.09                           | <0.01 | 0.35                           | 0.01  | 0.01                          | 0.02                                                                | 11    |  |  |
|         | 0.00  | 7.60  | 7.60     | 99.03      | 0.11                           | <0.01 | 0.32                           | 0.01  | 0.01                          | 0.02                                                                | 7     |  |  |
|         | 7.60  | 10.20 | 2.60     |            |                                | -     | Overbu                         | rden  |                               |                                                                     |       |  |  |
| ТМЗ     | 10.20 | 11.00 | 0.80     | 99.08      | 0.11                           | <0.01 | 0.27                           | 0.01  | 0.01                          | 0.02                                                                | 6     |  |  |
|         | 11.00 | 11.90 | 0.90     | Overburden |                                |       |                                |       |                               |                                                                     |       |  |  |
|         | 11.90 | 18.00 | 6.10     | 98.79      | 0.11                           | <0.01 | 0.29                           | <0.01 | 0.01                          | 0.02                                                                | 10    |  |  |
| TM4     | 0.00  | 5.22  | 5.22     | 99.09      | 0.09                           | <0.01 | 0.33                           | <0.01 | 0.01                          | 0.02                                                                | 12    |  |  |
|         | 0.00  | 3.80  | 3.80     | 98.82      | 0.15                           | <0.01 | 0.29                           | <0.01 | 0.01                          | 0.04                                                                | 15    |  |  |
|         | 3.80  | 4.50  | 0.70     |            |                                |       | Overbu                         | rden  |                               |                                                                     |       |  |  |
|         | 4.50  | 7.00  | 2.50     | 98.85      | 0.12                           | <0.01 | 0.31                           | 0.02  | 0.01                          | 0.02                                                                | 20    |  |  |
|         | 7.00  | 10.20 | 3.20     |            |                                |       | Overbu                         | rden  |                               | (%)<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 |       |  |  |
| тм5     | 10.20 | 12.00 | 1.80     | 98.77      | 0.09                           | <0.01 | 0.34                           | 0.01  | <0.01                         | 0.01                                                                | 12    |  |  |
|         | 12.00 | 13.00 | 1.00     |            |                                | -     | Overbu                         | rden  |                               |                                                                     |       |  |  |
|         | 13.00 | 17.50 | 4.50     | 98.30      | 0.15                           | 0.09  | 0.34                           | 0.02  | <0.01                         | 0.01                                                                | 13    |  |  |
|         | 17.50 | 20.10 | 2.60     |            |                                |       | Overbu                         | rden  |                               |                                                                     |       |  |  |
|         | 20.10 | 33.20 | 13.10    | 98.81      | 0.11                           | <0.01 | 0.31                           | 0.01  | <0.01                         | 0.01                                                                | 9     |  |  |

 Table 4.
 Table Mountain Zone - Channel Sampling

### Discussion

Sampling results within the zones were consistently high purity, with the northern Table Mountain Zone returning the best and most consistent grades. The favourable grades reflect field observations of a broad zone of white quartzite measuring at least 150 metres wide and a strike length extending from the Trans-Canada Highway to the south and to the north, beyond the northern end of the Property, representing a total strike length of at least 4 kilometres. Although the western cliff face of Table Mountain clearly demarcates the western margin of the Mount Wilson Formation quartzite, the eastern margin is obscured by a deep boulder field originating from the extensive, steep quartzite exposure in this area.

Channels sampling results demonstrated a consistency in grade over a wide area within the Table Mountain Zone.

All samples were submitted to ALS Laboratories in North Vancouver, British Columbia for B-MS82L (boron) and ME-XRF26 (all other elements). Four sample duplicates were taken in the channel sampling sequence, and passed QA/QC.

### \* Cautionary Note

The reader is cautioned that grab samples are selective by nature and may not represent the true grade or style of mineralization across the property.

## About the Table Mountain Project

The Table Mountain Silica Project comprises 2,304 hectares located 4 kilometres east of Golden, B.C., with excellent year-round access and proximity to the Canadian Pacific Railway Golden Rail Yard. The property hosts up to 10 kilometers of regionally mapped strike length of the Mount Wilson Formation, with apparent widths ranging from 300 to 1,400 metres at surface. The project is strategically positioned near both the Moberly Silica Mine and Sinova Quartz silica quarry, which exhibit economic grade silica greater than 99.6% SiO<sub>2</sub> purity.

### **Qualified Person**

Technical information in this news release has been reviewed and approved by Case Lewis, P.Geo., a "Qualified Person" as defined under NI 43-101 Standards of Disclosure for Mineral Projects and a director of the Table Mountain Project vendor.

### **About Troy Minerals**

Troy Minerals is a Canadian based publicly listed mining company focused on building shareholder value through acquisition, exploration, and development of strategically located "critical" mineral assets. Troy is aggressively advancing its projects within the silica (silicon), vanadium, and rare earths industries within regions that exhibit high and growing demand for such commodities, in both North America and Central-East Asia. The Company's primary objective is the near-term prospect of production with a vision of becoming a cash-flowing mining company to ultimately deliver tangible monetary value to shareholders, state, and local communities.

### ON BEHALF OF THE BOARD,

Rana Vig | CEO & Director Telephone: 604-218-4766

#### Email: rana@ranavig.com

#### **Forward-Looking Statements**

Statement Regarding Forward-Looking Information: This release includes certain statements that may be deemed "forward-looking statements". All statements in this release, other than statements of historical facts, that address events or developments that Troy Resources Inc. (the "Company") expects to occur, are forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words "expects", "plans", "anticipates", "believes", "intends", "estimates", "projects", "potential" and similar expressions, or that events or conditions "will", "would", "may", "could" or "should" occur. Although the Company believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results may differ materially from those in the forward-looking statements. Factors that could cause the actual results to differ materially from those in forward-looking statements include results of exploration activities may not show quality and quantity necessary for further exploration or future exploitation of minerals deposits, volatility of commodity prices, and continued availability of capital and financing, permitting and other approvals, and general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance and actual results or developments may differ materially from those projected in the forward-looking statements. Forward-looking statements are based on the beliefs, estimates and opinions of the Company's management on the date the statements are made. Except as required by applicable securities laws, the Company undertakes no obligation to update these forward-looking statements in the event that management's beliefs, estimates or opinions, or other factors, should change.

The Canadian Securities Exchange has not reviewed this press release and does not accept responsibility for the adequacy or accuracy of this news release.